skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Xiaotong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Two-dimensional hybrid metal-halide perovskites (2D-MHPs) have emerged as important solution-processed semiconductors with favorable optical and electronic properties for diverse applications in photovoltaics, optoelectronics, and spintronics. The quasi-2D layered structures, featuring large acoustic impedance mismatches between the organic and inorganic sublattices, are expected to result in distinct and anisotropic thermal transport properties along the cross-plane and in-plane directions. Here, we introduce transducer-free vibrational-pump-visible-probe (VPVP) approaches that enable accurate quantification of anisotropic thermal transport properties in various archetypical single-crystalline 2D-MHPs. Specifically, using VPVP spectroscopy and VPVP microscopy, we measure the anisotropic thermal diffusivities of 2D-MHPs with systematically varied Pb-I octahedral layer thicknesses, as well as organic spacer types and lengths, revealing how these structural parameters alter the cross-plane and in-plane thermal transport properties in distinct ways. While diffuse interface scattering plays an important role in dictating cross-plane thermal transport, in-plane thermal transport is primarily determined by phonon transport within interconnected inorganic layers. Density functional theory incorporating four-phonon scatterings provides further insight into the low thermal conductivity and modest thermal conduction anisotropy in 2D-MHPs. Our work demonstrates a new all-optical and noncontact method, which requires minimal sample preparation and allows direct visualization of cross-plane and in-plane thermal transport, potentially compatible with sample environments. The demonstrated VPVP approaches can advance understanding of thermal transport in 2D-MHPs as well as wide-ranging hybrid and polymeric semiconductors beyond 2D-MHPs. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Abstract Hybrid organic–inorganic perovskites such as methylammonium lead iodide have emerged as promising semiconductors for energy‐relevant applications. The interactions between charge carriers and lattice vibrations, giving rise to polarons, have been invoked to explain some of their extraordinary optoelectronic properties. Here, time‐resolved optical spectroscopy is performed, with off‐resonant pumping and electronic probing, to examine several representative lead iodide perovskites. The temporal oscillations of electronic bandgaps induced by coherent lattice vibrations are reported, which is attributed to antiphase octahedral rotations that dominate in the examined 3D and 2D hybrid perovskites. The off‐resonant pumping scheme permits a simplified observation of changes in the bandgap owing to theAgvibrational mode, which is qualitatively different from vibrational modes of other symmetries and without increased complexity of photogenerated electronic charges. The work demonstrates a strong correlation between the lead–iodide octahedral framework and electronic transitions, and provides further insights into the manipulation of coherent optical phonons and related properties in hybrid perovskites on ultrafast timescales. 
    more » « less